题目内容
设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1,x2∈[0,]都有f(x1+x2)=f(x1)·f(x2).(1)设f(1)=2,求f(),f();
(2)证明f(x)是周期函数.
(1)解析:令x1=x2=.
则f(x)=f(+)=f2()≥0.
再令x1=x2=,∴f(1)=f2().
∴f()=;
令x1=x2=,∴f()=f2().
∴f()=.
(2)证明:∵f(x)是偶函数,∴f(-x)=f(x).
又因f(x)的图象关于直线x=1对称,
∴f(x+2)=f(-x),
∴f(x+2)=f(x).
即f(x)是周期为2的周期函数.
练习册系列答案
相关题目