题目内容
如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
(1)见解析(2)(3)AM=.
【解析】(1)证明:易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.
(2) =(1,-2,-1).
设平面B1CE的法向量m=(x,y,z),
则即消去x,得y+2z=0,不妨令z=1,可得一个法向量为m=(-3,-2,1).
由(1),B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.
于是cos〈m,〉===-,从而sin〈m,〉=,所以二面角B1-CE-C1的正弦值为.
(3) =(0,1,0),=(1,1,1),设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.
设θ为直线AM与平面ADD1A1所成的角,则
sin θ=|cos〈,〉|==,
于是=,解得λ=,所以AM=
练习册系列答案
相关题目