题目内容

【题目】已知函数f(x)=sin(3x+ ).
(1)求f(x)的单调递增区间;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.

【答案】
(1)解:∵函数f(x)=sin(3x+ ),令 2kπ﹣ ≤3x+ ≤2kπ+ ,k∈Z,

求得 ≤x≤ + ,故函数的增区间为[ + ],k∈Z.


(2)解:由函数的解析式可得 f( )=sin(α+ ),又f( )= cos(α+ )cos2α,

∴sin(α+ )= cos(α+ )cos2α,即sin(α+ )= cos(α+ )(cos2α﹣sin2α),

∴sinαcos +cosαsin = (cosαcos ﹣sinαsin )(cosα﹣sinα)(cosα+sinα)

即 (sinα+cosα)= (cosα﹣sinα)2(cosα+sinα),

又∵α是第二象限角,∴cosα﹣sinα<0,

当sinα+cosα=0时,tanα=﹣1,sinα= ,cosα=﹣ ,此时cosα﹣sinα=﹣

当sinα+cosα≠0时,此时cosα﹣sinα=﹣

综上所述:cosα﹣sinα=﹣ 或﹣


【解析】(1)令 2kπ﹣ ≤3x+ ≤2kπ+ ,k∈z,求得x的范围,可得函数的增区间.(2)由函数的解析式可得 f( )=sin(α+ ),又f( )= cos(α+ )cos2α,可得sin(α+ )= cos(α+ )cos2α,化简可得 (cosα﹣sinα)2= .再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网