题目内容
【题目】若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”,已知函数f(x)=x2(x∈R),g(x)= (x<0),h(x)=2elnx,有下列命题:
①F(x)=f(x)﹣g(x)在 内单调递增;
②f(x)和g(x)之间存在“隔离直线”,且b的最小值为﹣4;
③f(x)和g(x)之间存在“隔离直线”,且k的取值范围是(﹣4,0];
④f(x)和h(x)之间存在唯一的“隔离直线”y=2 x﹣e.
其中真命题的个数为(请填所有正确命题的序号)
【答案】①②④
【解析】解:①∵F(x)=f(x)﹣g(x)=x2﹣ ,∴x∈(﹣ ,0),F′(x)=2x+ >0,∴F(x)=f(x)﹣g(x)在x∈(﹣ ,0)内单调递增,故①对;
②、③设f(x)、g(x)的隔离直线为y=kx+b,则x2≥kx+b对一切实数x成立,即有△1≤0,k2+4b≤0,
又 ≤kx+b对一切x<0成立,则kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,
即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k﹣4≤k≤0,同理﹣4≤b≤0,故②对,③错;
④函数f(x)和h(x)的图象在x= 处有公共点,因此存在f(x)和g(x)的隔离直线,
那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y﹣e=k(x﹣ ),即y=kx﹣k +e,
由f(x)≥kx﹣k +e(x∈R),可得x2﹣kx+k ﹣e≥0当x∈R恒成立,
则△≤0,只有k=2 ,此时直线方程为:y=2 x﹣e,
下面证明h(x)≤2 x﹣e,令G(x)=2 x﹣e﹣h(x)=2 x﹣e﹣2elnx,
G′(x)= ,
当x= 时,G′(x)=0,当0<x< 时,G′(x)<0,当x> 时,G′(x)>0,
则当x= 时,G(x)取到极小值,极小值是0,也是最小值.
所以G(x)=2 x﹣e﹣g(x)≥0,则g(x)≤2 x﹣e当x>0时恒成立.
∴函数f(x)和g(x)存在唯一的隔离直线y=2 x﹣e,故④正确.
所以答案是:①②④.
【考点精析】本题主要考查了命题的真假断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.