题目内容
Sn=
+
+
+
+…+
=
.
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
4×5 |
1 |
n(n+1) |
n |
n+1 |
n |
n+1 |
分析:由数列通项
=
-
,想到利用裂项相消法求和.
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
解答:解:∵
=
-
,
∴Sn=
+
+
+
+…+
=(1-
)+(
-
)+(
-
)+…+(
-
)
=1-
=
.
故答案为:
.
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴Sn=
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
4×5 |
1 |
n(n+1) |
=(1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
=1-
1 |
n+1 |
n |
n+1 |
故答案为:
n |
n+1 |
点评:本题考查了数列的求和,训练了裂项相消法,属中低档题.
练习册系列答案
相关题目
若Sn=
+
+
…+
(n∈N*),则S10等于( )
1 |
1•2 |
1 |
2•3 |
1 |
3•4 |
1 |
n•(n+1) |
A、
| ||
B、
| ||
C、
| ||
D、
|