题目内容
【题目】已知函数y=f(x)的定义在实数集R上的奇函数,且当x∈(﹣∞,0)时,xf′(x)<f(﹣x)(其中f′(x)是f(x)的导函数),若a= f( ),b=(lg3)f(lg3),c=(log2 )f(log2 ),则( )
A.c>a>b
B.c>b>a
C.a>b>c
D.a>c>b
【答案】A
【解析】解:设F(x)=xf(x),得F'(x)=x'f(x)+xf'(x)=xf'(x)+f(x),
∵当x∈(﹣∞,0)时,xf′(x)<f(﹣x),且f(﹣x)=﹣f(x)
∴当x∈(﹣∞,0)时,xf′(x)+f(x)<0,即F'(x)<0
由此可得F(x)=xf(x)在区间(﹣∞,0)上是减函数,
∵函数y=f(x)是定义在实数集R上的奇函数,
∴F(x)=xf(x)是定义在实数集R上的偶函数,在区间(0,+∞)上F(x)=xf(x)是增函数.
∵0<lg3<lg10=1, ∈(1,2)
∴F(2)>F( )>F(lg3)
∵ =﹣2,从而F( )=F(﹣2)=F(2)
∴F( )>F( )>F(lg3)
即 > >(lg3)f(lg3),得c>a>b
所以答案是:A
【考点精析】本题主要考查了对数值大小的比较和导数的几何意义的相关知识点,需要掌握几个重要的对数恒等式:,,;常用对数:,即;自然对数:,即(其中…);通过图像,我们可以看出当点趋近于时,直线与曲线相切.容易知道,割线的斜率是,当点趋近于时,函数在处的导数就是切线PT的斜率k,即才能正确解答此题.
【题目】如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用 (单位:万元)和利润 (单位:十万元)之间的关系,得到下列数据:
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
请回答:
(Ⅰ)请用相关系数说明与之间是否存在线性相关关系(当时,说明与之间具有线性相关关系);
(Ⅱ)根据1的判断结果,建立与之间的回归方程,并预测当时,对应的利润为多少(精确到).
附参考公式:回归方程中中和最小二乘估计分别为,,
相关系数.
参考数据: .