题目内容
已知A与B是集合{1,2,3,…,100}的两个子集,满足:A与B的元素个数相同,且为A∩B空集。若n∈A时总有2n+2∈B,则集合A∪B的元素个数最多为( )
A.62 | B.66 | C.68 | D.74 |
B
先证|A∪B|≤66,只须证|A|≤33,为此只须证若A是{1,2,…,49}的任一个34元子集,则必存在n∈A,使得2n+2∈B。证明如下:
将{1,2,…,49}分成如下33个集合:{1,4},{3,8},{5,12},…,{23,48}共12个;{2,6},{10,22},{14,30},{18,38}共4个;{25},{27},{29},…,{49}共13个;{26},{34},{42},{46}共4个。由于A是{1,2,…,49}的34元子集,从而由抽屉原理可知上述33个集合中至少有一个2元集合中的数均属于A,即存在n∈A,使得2n+2∈B。
如取A={1,3,5,…,23,2,10,14,18,25,27,29,…,49,26,34,42,46},
B={2n+2|n∈A},则A、B满足题设且|A∪B|≤66。
将{1,2,…,49}分成如下33个集合:{1,4},{3,8},{5,12},…,{23,48}共12个;{2,6},{10,22},{14,30},{18,38}共4个;{25},{27},{29},…,{49}共13个;{26},{34},{42},{46}共4个。由于A是{1,2,…,49}的34元子集,从而由抽屉原理可知上述33个集合中至少有一个2元集合中的数均属于A,即存在n∈A,使得2n+2∈B。
如取A={1,3,5,…,23,2,10,14,18,25,27,29,…,49,26,34,42,46},
B={2n+2|n∈A},则A、B满足题设且|A∪B|≤66。
练习册系列答案
相关题目