题目内容
已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
an+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{n2an}的前n项和Tn.
n+1 | 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{n2an}的前n项和Tn.
分析:(Ⅰ)由a1=1,a1+2a2+3a3+…+nan=
an+1(n∈N*).知
=
,a2=1,所以an+1=a2×
×
×…×
=1×(3×
)×(3×
)×…×(3×
)=3n-1×
,由此能求出an=
.
(Ⅱ)由an=
.知n2an=
,所以Tn=1+4×30+6×3+8×32+…+2n•3n-2,再由错位相减法能求出Tn.
n+1 |
2 |
an+1 |
an |
3n |
n+1 |
a3 |
a2 |
a4 |
a3 |
an+1 |
an |
2 |
3 |
3 |
4 |
n |
n+1 |
2 |
n+1 |
|
(Ⅱ)由an=
|
|
解答:解:(Ⅰ)∵a1=1,a1+2a2+3a3+…+nan=
an+1(n∈N*).
∴a1+2a2+3a3+…+(n-1)an-1=
an,
∴nan=
an+1-
an,
∴
=
,
在a1=1,a1+2a2+3a3+…+nan=
an+1(n∈N*),
取n=1,得a2=1,
∴an+1=a2×
×
×…×
=1×(3×
)×(3×
)×…×(3×
)
=3n-1×
,
∴an=
.
(Ⅱ)∵an=
.
∴n2an=
,
∴Tn=1+4×30+6×3+8×32+…+2n•3n-2,①
3Tn=3+4×3+6×32+8×33+…+2(n-1)•3n-2+2n•3n-1,②
①-②,得-2Tn=-2+4+2×(3+32+33+…+3n-2)-2n×3n-1
=2+2×
-2n×3n-1
=2+3n-1-3-2n×3n-1
=3n-1-1-2n×3n-1
∴Tn=
+n×3n-1-
.
n+1 |
2 |
∴a1+2a2+3a3+…+(n-1)an-1=
n |
2 |
∴nan=
n+1 |
2 |
n |
2 |
∴
an+1 |
an |
3n |
n+1 |
在a1=1,a1+2a2+3a3+…+nan=
n+1 |
2 |
取n=1,得a2=1,
∴an+1=a2×
a3 |
a2 |
a4 |
a3 |
an+1 |
an |
=1×(3×
2 |
3 |
3 |
4 |
n |
n+1 |
=3n-1×
2 |
n+1 |
∴an=
|
(Ⅱ)∵an=
|
∴n2an=
|
∴Tn=1+4×30+6×3+8×32+…+2n•3n-2,①
3Tn=3+4×3+6×32+8×33+…+2(n-1)•3n-2+2n•3n-1,②
①-②,得-2Tn=-2+4+2×(3+32+33+…+3n-2)-2n×3n-1
=2+2×
3(1-3n-2) |
1-3 |
=2+3n-1-3-2n×3n-1
=3n-1-1-2n×3n-1
∴Tn=
1 |
2 |
3n-1 |
2 |
点评:本题考查数列的通项公式的求法和数列的前n项和的计算,解题时要认真审题,注意构造法、累乘法和错位相减法的灵活运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|