题目内容

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+12
an+1(n∈N*)

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{n2an}的前n项和Tn
分析:(Ⅰ)由a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)
.知
an+1
an
=
3n
n+1
,a2=1,所以an+1=a2×
a3
a2
×
a4
a3
×…×
an+1
an
=1×(3×
2
3
)
×(3×
3
4
)
×…×(3×
n
n+1
)
=3n-1×
2
n+1
,由此能求出an=
1,n=1
3n-2
2
n
,n≥2

(Ⅱ)由an=
1,n=1
3n-2
2
n
,n≥2
.知n2an=
1,n=1
2n•3n-2,n≥2
,所以Tn=1+4×30+6×3+8×32+…+2n•3n-2,再由错位相减法能求出Tn
解答:解:(Ⅰ)∵a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

a1+2a2+3a3+…+(n-1)an-1=
n
2
an

∴nan=
n+1
2
an+1-
n
2
an

an+1
an
=
3n
n+1

在a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

取n=1,得a2=1,
∴an+1=a2×
a3
a2
×
a4
a3
×…×
an+1
an

=1×(3×
2
3
)
×(3×
3
4
)
×…×(3×
n
n+1
)

=3n-1×
2
n+1

an=
1,n=1
3n-2
2
n
,n≥2

(Ⅱ)∵an=
1,n=1
3n-2
2
n
,n≥2

∴n2an=
1,n=1
2n•3n-2,n≥2

∴Tn=1+4×30+6×3+8×32+…+2n•3n-2,①
3Tn=3+4×3+6×32+8×33+…+2(n-1)•3n-2+2n•3n-1,②
①-②,得-2Tn=-2+4+2×(3+32+33+…+3n-2)-2n×3n-1
=2+2×
3(1-3n-2)
1-3
-2n×3n-1
=2+3n-1-3-2n×3n-1
=3n-1-1-2n×3n-1
∴Tn=
1
2
+n×3n-1-
3n-1
2
点评:本题考查数列的通项公式的求法和数列的前n项和的计算,解题时要认真审题,注意构造法、累乘法和错位相减法的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网