题目内容
(本大题9分)袋中有2个红球,n个白球,各球除颜色外均相同.已知从袋中摸出2个球均为白球的概率为,(Ⅰ)求n;(Ⅱ)从袋中不放回的依次摸出三个球,记ξ为相邻两次摸出的球不同色的次数(例如:若取出的球依次为红球、白球、白球,则ξ=1),求随机变量ξ的分布列及其数学期望Eξ.
(1)n=4
(2)
P(= P(= Eξ=
(2)
P(= P(= Eξ=
(I)由于每个球被摸到的机会是均等的,故可用古典概型的概率公式解答.
(II)ξ为相邻两次摸出的球不同色的次数,则随机变量ξ的取值为0,1,2,利用古典概型的概率公式求出相应的概率,进而可得ξ的分布列及其数学期望Eξ.
(II)ξ为相邻两次摸出的球不同色的次数,则随机变量ξ的取值为0,1,2,利用古典概型的概率公式求出相应的概率,进而可得ξ的分布列及其数学期望Eξ.
练习册系列答案
相关题目