题目内容
用数学归纳法证明等式
+
+…+
>1(n≥2)的过程中,由n=k递推到n=k+1时不等式左边( )
1 |
n+1 |
1 |
n+2 |
1 |
3n+1 |
分析:依题意,由n=k递推到n=k+1时,不等式左边为
+
+…+
+
+
+
,与n=k时不等式的左边比较即可得到答案.
1 |
k+2 |
1 |
k+3 |
1 |
3k+1 |
1 |
3k+2 |
1 |
3k+3 |
1 |
3(k+1)+1 |
解答:解:用数学归纳法证明等式
+
+…+
>1(n≥2)的过程中,
假设n=k时不等式成立,左边=
+
+
+…+
(k≥2),
则当n=k+1时,左边=
+
+…+
+
+
+
(k≥2),
∴由n=k递推到n=k+1时不等式左边增加了:
+
+
-
=
+
-
=
+
-
.
故选:C.
1 |
n+1 |
1 |
n+2 |
1 |
3n+1 |
假设n=k时不等式成立,左边=
1 |
k+1 |
1 |
k+2 |
1 |
k+3 |
1 |
3k+1 |
则当n=k+1时,左边=
1 |
k+2 |
1 |
k+3 |
1 |
3k+1 |
1 |
3k+2 |
1 |
3k+3 |
1 |
3(k+1)+1 |
∴由n=k递推到n=k+1时不等式左边增加了:
1 |
3k+2 |
1 |
3k+3 |
1 |
3(k+1)+1 |
1 |
k+1 |
=
1 |
3k+2 |
1 |
3(k+1)+1 |
2 |
3k+3 |
=
1 |
3k+2 |
1 |
3k+4 |
2 |
3k+3 |
故选:C.
点评:本题考查数学归纳法,考查观察、推理与运算能力,属于中档题.
练习册系列答案
相关题目