题目内容

如图,已知E、F为平面上的两个定点|EF|=6,|FG|=10,且2
EH
=
EG
HP
GE
=0
(G为动点,P是HP和GF的交点).
(Ⅰ)建立适当的平面直角坐标系求出点P的轨迹方程;
(Ⅱ)若点P的轨迹上存在两个不同的点A、B,且线段AB的中垂线与直线EF相交于一点C,证明|OC|<
9
5
(O为EF的中点).
精英家教网
(Ⅰ)以EF所在的直线为x轴,EF的中垂线为y轴,建立平面直角坐标系.
由题设2
EH
=
EG
HP
EG
=0

∴|PG|=|PE|,而|PF|+|PE|=|PG|=2a.
∴点P是以E、F为焦点、长轴长为10的椭圆.
故点P的轨迹方程是
x2
25
+
y2
16
=1
.…(4分)
(Ⅱ)设A(x1,y1),B(x2,y2),C(x0,0).
∴x1≠x2,且|CA|=|CB|,即(x1-x02+y12=(x2-x02+y22
又A、B在轨迹上,∴
x12
25
+
y12
16
=1
x22
25
+
y22
16
=1

y12=16-
16
25
x12
y22=16-
16
25
x22

代入整理,得2(x2-x1)•x0=
9
25
(x22-x12)

∵x1≠x2,∴x0=
9(x1+x2)
50

∵-5≤x1≤5,-5≤x2≤5,∴-10≤x1+x2≤10.
∵x1≠x2,∴-10<x1+x2<10.
-
9
5
x0
9
5
,即|OC|<
9
5
.…(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网