题目内容

f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)≥0,对任意正数m,n若m≥n,则mf(n)与nf(m)的大小关系是mf(n)
nf(m)(请用≤,≥,或=)
分析:令F(x)=
f(x)
x
,F'(x)=
1
x2
[xf′(x)-f(x)],由xf′(x)-f(x)>0,知F(x)是增函数,当m≥n>0时,F(m)≥F(n),所以
f(n)
n
f(m)
m
,从而mf(n)≤nf(m).
解答:解:令F(x)=
f(x)
x

F'(x)=
1
x2
[xf′(x)-f(x)],
∵xf′(x)-f(x)≥0,
∴F'(x)≥0,即F(x)是增函数,
即当m≥n>0时,F(m)≥F(n),
f(n)
n
f(m)
m
,从而mf(n)≤nf(m).
故答案为:≤.
点评:本题考查函数的单调性和导数的关系,解题时要认真审题,注意导数的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网