题目内容
.(本题满分12分)
如图甲,直角梯形中,
,
,点
、
分别在
,
上,且
,
,
,
,现将梯形
沿
折起,使平面
与平面
垂直(如图乙).
(Ⅰ)求证:平面
;
(Ⅱ)当的长为何值时,二面角
的大小为
?
【答案】
法一:(Ⅰ)MB//NC,MB平面DNC,NC
平面DNC,
MB//平面DN C.…………………2分
同理MA//平面DNC,又MAMB=M, 且MA,MB
平面MA B.
. (6分)
(Ⅱ)过N作NH交BC延长线于H,连HN,
平面AMND
平面MNCB,DN
MN,
…………………8分
DN
平面MBCN,从而
,
为二面角D-BC-N的平面角.
=
…………………10分
由MB=4,BC=2,知
60º,
.
sin60º =
…………………11分
由条件知: …………………12分
解法二:如图,以点N为坐标原点,以NM,NC,ND所在直线分别作为轴,
轴和
轴,建立空间直角坐标系
易得NC=3,MN=
,
设,则
.
(I).
,
∵,
∴与平面
共面,又
,
.
(6分)
(II)设平面DBC的法向量,
则,令
,则
,
∴.
(8分)
又平面NBC的法向量.
(9分)
…………………11分
即: 又
即
…………………12分
【解析】略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目