题目内容
如图,在正四棱柱ABCD-A1B1C1D1中,AA1=AB,点E、M分别为A1B、C1C的中点,过点A1、B、M三点的平面A1BMN交C1D1于点N.(1)求证:EM∥平面A1B1C1D1;
(2)求二面角B-A1N-B1的正切值;
(3)设截面A1BMN把该正四棱柱截成的两个几何体的体积分别为V1、V2(V1<V2),求V1:V2的值.
【答案】分析:(1)设A1B1的中点为F,连接EF、FC1.跟中位线的性质可知EFB1B.进而根据C1MB1B判断出EFMC1.推断出EMC1F为平行四边形.进而可知EM∥FC1.推断出EM∥平面A1B1C1D1.
(2)作B1H⊥A1N于H,连接BH.根据BB1⊥平面A1B1C1D1,可知BH⊥A1N,进而推断出∠BHB1为二面角B-A1N-B1的平面角.根据EM∥平面A1B1C1D1,EM?平面A1BMN,平面A1BMN∩平面A1B1C1D1=A1N,推断出EM∥A1N.进而可推断出A1N∥FC1.A1F∥NC1,推知A1FC1N是平行四边形.AA1=a,在Rt△A1D1N中,求得A1N,进而求得sin∠A1ND1,同理求得B1H则在Rt△BB1H中求得答案.
(3)延长A1N与B1C1交于P,则P∈平面A1BMN,且P∈平面BB1C1C.首先判断出几何体MNC1-BA1B1为棱台.进而求得底面积和高,分别求得各自的体积.
解答:解:(1)证明:设A1B1的中点为F,连接EF、FC1.
∵E为A1B的中点,∴EFB1B.
又C1MB1B,∴EFMC1.
∴四边形EMC1F为平行四边形.
∴EM∥FC1.∵EM?平面A1B1C1D1,
FC1?平面A1B1C1D1,
∴EM∥平面A1B1C1D1.
(2)解:作B1H⊥A1N于H,连接BH.
∵BB1⊥平面A1B1C1D1,∴BH⊥A1N.
∴∠BHB1为二面角B-A1N-B1的平面角.
∵EM∥平面A1B1C1D1,EM?平面A1BMN,平面A1BMN∩平面A1B1C1D1=A1N,
∴EM∥A1N.
又∵EM∥FC1,∴A1N∥FC1.
又∵A1F∥NC1,∴四边形A1FC1N是平行四边形.∴NC1=A1F.
设AA1=a,则A1B1=2a,D1N=a.
在Rt△A1D1N中,
A1N==a,
∴sin∠A1ND1==.
在Rt△A1B1H中,B1H=A1B1sin∠HA1B1=2a•=a.
在Rt△BB1H中,
tan∠BHB1===.
(3)解:延长A1N与B1C1交于P,则P∈平面A1BMN,且P∈平面BB1C1C.
又∵平面A1BMN∩平面BB1C1C=BM,
∴P∈BM,即直线A1N、B1C1、BM交于一点P.
又∵平面MNC1∥平面BA1B1,
∴几何体MNC1-BA1B1为棱台.
∵S=•2a•a=a2,
S=•a•a=a2,
棱台MNC1-BA1B1的高为B1C1=2a,
V1=•2a•(a2++a2)=a3,∴V2=2a•2a•a-a3=a3.
∴=.
点评:本题主要考查了直线与平面平行的判定,棱台的体积计算等.考查了学生的综合素质.
(2)作B1H⊥A1N于H,连接BH.根据BB1⊥平面A1B1C1D1,可知BH⊥A1N,进而推断出∠BHB1为二面角B-A1N-B1的平面角.根据EM∥平面A1B1C1D1,EM?平面A1BMN,平面A1BMN∩平面A1B1C1D1=A1N,推断出EM∥A1N.进而可推断出A1N∥FC1.A1F∥NC1,推知A1FC1N是平行四边形.AA1=a,在Rt△A1D1N中,求得A1N,进而求得sin∠A1ND1,同理求得B1H则在Rt△BB1H中求得答案.
(3)延长A1N与B1C1交于P,则P∈平面A1BMN,且P∈平面BB1C1C.首先判断出几何体MNC1-BA1B1为棱台.进而求得底面积和高,分别求得各自的体积.
解答:解:(1)证明:设A1B1的中点为F,连接EF、FC1.
∵E为A1B的中点,∴EFB1B.
又C1MB1B,∴EFMC1.
∴四边形EMC1F为平行四边形.
∴EM∥FC1.∵EM?平面A1B1C1D1,
FC1?平面A1B1C1D1,
∴EM∥平面A1B1C1D1.
(2)解:作B1H⊥A1N于H,连接BH.
∵BB1⊥平面A1B1C1D1,∴BH⊥A1N.
∴∠BHB1为二面角B-A1N-B1的平面角.
∵EM∥平面A1B1C1D1,EM?平面A1BMN,平面A1BMN∩平面A1B1C1D1=A1N,
∴EM∥A1N.
又∵EM∥FC1,∴A1N∥FC1.
又∵A1F∥NC1,∴四边形A1FC1N是平行四边形.∴NC1=A1F.
设AA1=a,则A1B1=2a,D1N=a.
在Rt△A1D1N中,
A1N==a,
∴sin∠A1ND1==.
在Rt△A1B1H中,B1H=A1B1sin∠HA1B1=2a•=a.
在Rt△BB1H中,
tan∠BHB1===.
(3)解:延长A1N与B1C1交于P,则P∈平面A1BMN,且P∈平面BB1C1C.
又∵平面A1BMN∩平面BB1C1C=BM,
∴P∈BM,即直线A1N、B1C1、BM交于一点P.
又∵平面MNC1∥平面BA1B1,
∴几何体MNC1-BA1B1为棱台.
∵S=•2a•a=a2,
S=•a•a=a2,
棱台MNC1-BA1B1的高为B1C1=2a,
V1=•2a•(a2++a2)=a3,∴V2=2a•2a•a-a3=a3.
∴=.
点评:本题主要考查了直线与平面平行的判定,棱台的体积计算等.考查了学生的综合素质.
练习册系列答案
相关题目
如图,在正四棱柱ABCD-A′B′C′D′中(底面是正方形的直棱柱),侧棱AA′=
,AB=
,则二面角A′-BD-A的大小为( )
3 |
2 |
A、30° | B、45° |
C、60° | D、90° |