题目内容
已知函数
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若

【答案】分析:(Ⅰ)利用二倍角与两角和的正弦函数化简函数为一个角的一个三角函数的形式,然后求f(x)的最小正周期;
(Ⅱ)通过
,求出函数f(x)的角的范围,然后根据三角函数的最值,求解函数的最大值和最小值,以及对应的x的值.
解答:解:(Ⅰ)f(x)=
(2分).
=
(3分)
=
(4分)
=
(5分)
所以最小正周期为π(6分)
(Ⅱ)因为
,所以
,(8分)
当
,即
时,f(x)的最大值为1(10分)
当
,即
时,f(x)的最小值为-2.(12分)
点评:本题考查三角函数的最值,三角函数中的恒等变换应用,考查三角函数的基本性质,考查计算能力.
(Ⅱ)通过

解答:解:(Ⅰ)f(x)=

=

=

=

所以最小正周期为π(6分)
(Ⅱ)因为


当


当


点评:本题考查三角函数的最值,三角函数中的恒等变换应用,考查三角函数的基本性质,考查计算能力.

练习册系列答案
相关题目