题目内容
(文)对于任意的平面向量
=(x1,y1),
=(x2,y2),定义新运算⊕:
⊕
=(x1+x2,y1y2).若
,
,
为平面向量,k∈R,则下列运算性质一定成立的所有序号是
①
⊕
=
⊕
;
②(k
)⊕
=
⊕(k
);
③
⊕(
⊕
)=(
⊕
)⊕
;
④
⊕(
+
)=
⊕
+
⊕
.
a |
b |
a |
b |
a |
b |
c |
①③
①③
.①
a |
b |
b |
a |
②(k
a |
b |
a |
b |
③
a |
b |
c |
a |
b |
c |
④
a |
b |
c |
a |
b |
a |
c |
分析:利用新定义和向量的线性运算即可判断出.
解答:解:①
⊕
=(x1+x2,y1y2)=(x2+x1,y2y1)=
⊕
,故正确;
②∵(k
)⊕
=(kx1+x2,ky1y2),
⊕(k
)=(x1+kx2,y1ky2),
∴(k
)⊕
≠
⊕(k
),故不正确;
③设
=(x3,y3),
∵
⊕(
⊕
)=
⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),
(
⊕
)⊕
=(x1+x2,y1y2)⊕
=(x1+x2+x3,y1y2y3),
∴
⊕(
⊕
)=(
⊕
)⊕
,故正确;
④设
=(x3,y3),
∵
⊕(
⊕
)=
⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),
⊕
+
⊕
=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),
∴
⊕(
⊕
)≠
⊕
+
⊕
,故不正确.
综上可知:只有①③正确.
故答案为①③.
a |
b |
b |
a |
②∵(k
a |
b |
a |
b |
∴(k
a |
b |
a |
b |
③设
c |
∵
a |
b |
c |
a |
(
a |
b |
c |
c |
∴
a |
b |
c |
a |
b |
c |
④设
c |
∵
a |
b |
c |
a |
a |
b |
a |
c |
∴
a |
b |
c |
a |
b |
a |
c |
综上可知:只有①③正确.
故答案为①③.
点评:熟练掌握新定义和向量的线性运算是解题的关键.
练习册系列答案
相关题目