题目内容
【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点
为抛物线
上一点.
(1)求的方程;
(2)若点在
上,过
作
的两弦
与
,若
,求证: 直线
过定点.
【答案】(1)或
; (2)证明见解析.
【解析】
试题分析:(1)当焦点在轴时,设
的方程为
,当焦点在
轴时,设
的方程为
,分别代入点
,求得
的值,即可得到抛物线的方程;(2)因为点
在
上,所以曲线
的方程为
,设点
,用直线与曲线方程联立,利用韦达定理整理得到
,即可得到
,判定直线过定点.
试题解析:(1)当焦点在轴时,设
的方程为
,代人点
得
,即
.当焦点在
轴时,设
的方程为
,代人点
得
,即
,
综上可知:的方程为
或
.
(2)因为点在
上,所以曲线
的方程为
.
设点,
直线,显然
存在,联立方程有:
.
,
即即
.
直线即
直线
过定点
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目