题目内容

9.求y=sin(2x+$\frac{π}{3}$)的单调区间.

分析 由条件根据正弦函数的单调性求得y=sin(2x+$\frac{π}{3}$)的单调区间.

解答 解:对于函数y=sin(2x+$\frac{π}{3}$),令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈z,
求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,可得函数的增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈z.
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈z,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,
可得函数的减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈z.

点评 本题主要考查正弦函数的单调性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网