题目内容

(2012•南京二模)设向量
a
=(2,sinθ),
b
=(1,cosθ),θ为锐角.
(1)若
a
b
=
13
6
,求sinθ+cosθ的值;
(2)若
a
b
,求sin(2θ+
π
3
)的值.
分析:(1)根据向量数量积的坐标公式列式并化简,得sinθcosθ=
1
6
.再由同角三角函数的平方关系,可得(sinθ+cosθ)2的值,结合θ为锐角,开方即得sinθ+cosθ的值;
(2)根据两个向量平行的充要条件列式,化简得tanθ=2.再由二倍角的正、余弦公式,结合弦化切的运算技巧,算出sin2θ和cos2θ的值,最后根据两角和的正弦公式,可得sin(2θ+
π
3
)的值.
解答:解:(1)∵
a
b
=2+sinθcosθ=
13
6
,∴sinθcosθ=
1
6
.    …(2分)
∴(sinθ+cosθ)2=1+2sinθcosθ=
4
3

又∵θ为锐角,∴sinθ+cosθ=
2
3
3
(舍负).               …(5分)
(2)∵
a
b

∴2×cosθ=sinθ×1,可得tanθ=2.               …(7分)
∴sin2θ=2sinθcosθ=
2sinθcosθ
sin2θ+cos2θ
=
2tanθ
tan2θ+1
=
4
5

cos2θ=cos2θ-sin2θ=
cos2θ-sin2θ
sin2θ+cos2θ
=
1-tan2θ
tan2θ+1
=-
3
5
.…(11分)
所以sin(2θ+
π
3
)=
1
2
sin2θ+
3
2
cos2θ=
1
2
×
4
5
+
3
2
×(-
3
5
 )=
4-3
3
10
.          …(14分)
点评:本题以平面向量数量积运算为载体,考查了同角三角函数的基本关系、二倍角的正余弦公式和两角和的正弦公式等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网