题目内容

(2012•房山区一模)已知△ABC中,内角A,B,C的对边分别为a,b,c,且cosA=
2
5
5
cosB=
3
10
10

(Ⅰ)求cos(A+B)的值;
(Ⅱ)设a=
10
,求△ABC的面积.
分析:(Ⅰ)由A,B,C分别为三角形的内角,及cosA与cosB的值,利用同角三角函数间的基本关系求出sinA和sinB的值,然后利用两角和与差的余弦函数公式化简cos(A+B),将各自的值代入即可求出值;
(Ⅱ)由cos(A+B)的值,利用特殊角的三角函数值求出A+B的度数,进而求出C的度数,得出sinC的值,再由a,sinA及sinB的值,利用正弦定理求出b的长,由a,b及sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:(本小题共13分)
解:(Ⅰ)∵A,B,C为△ABC的内角,且cosA=
2
5
5
,cosB=
3
10
10

∴sinA=
1-cos2A
=
5
5
,sinB=
1-cos2B
=
10
10
,…(4分)
∴cos(A+B)=cosAcosB-sinAsinB=
2
5
5
×
3
10
10
-
5
5
×
10
10
=
2
2
;…(7分)
(Ⅱ)由(I)知,A+B=45°,
∴C=135°,即sinC=
2
2
,…(8分)
又a=
10

∴由正弦定理
a
sinA
=
b
sinB
得:b=
asinB
sinA
=
10
×
10
10
5
5
=
5
,…(11分)
∴S△ABC=
1
2
absinC=
1
2
×
10
×
5
×
2
2
=
5
2
.…(13分)
点评:此题属于解三角形的题型,涉及的知识有:同角三角函数间的基本关系,两角和与差的余弦函数公式,正弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网