搜索
题目内容
我们把使得
的实数
x
叫做函数
的零点,对于区间
上的连续函数
,若
,那么函数
在区间
内有零点,则函数
的零点所在的区间应是
A.(1,2) B.(2,3) C.(3,4) D.(4,5)
试题答案
相关练习册答案
C
练习册系列答案
通城学典小学总复习系列答案
小学综合能力测评同步训练系列答案
名师伴你总复习系列答案
步步通优系列答案
三维同步学与练系列答案
毕业复习指导与训练系列答案
中考试题荟萃及详解系列答案
尚文阅读系列答案
深圳市小学第1课堂系列答案
深圳市小学英语课堂跟踪系列答案
相关题目
(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值; (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数
f(x)=
-
2
x
+b
2
x+1
+a
.
(1)求a,b的值;
(2)若不等式
-
m
2
+(k+2)m-
3
2
<f(x)<
m
2
+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.
(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值; (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数
f(x)=
-
2
x
+b
2
x+1
+a
.
(1)求a,b的值;
(2)若不等式
-
m
2
+(k+2)m-
3
2
<f(x)<
m
2
+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总