题目内容
点P在直径为的球面上,过P作两两垂直的三条弦,若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是
- A.
- B.6
- C.
- D.
D
分析:设三条弦长分别为x,2x,y,求出长方体的对角线的长,用椭圆的参数方程表示x,y,推出3条弦长之和的表达式,通过三角函数的化简辅助角公式,求出最大值.
解答:设三条弦长分别为x,2x,y,则:x2+(2x)2+y2=6,即:5x2+y2=6,设 ,则这3条弦长之和=3x+y==sin(θ+φ),其中tanφ=,所以它的最大值为:
故答案为:
点评:本题是中档题,考查球的内接多面体的就是问题,三角函数的化简与求值,是综合题目,考查计算能力,空间想象能力.
分析:设三条弦长分别为x,2x,y,求出长方体的对角线的长,用椭圆的参数方程表示x,y,推出3条弦长之和的表达式,通过三角函数的化简辅助角公式,求出最大值.
解答:设三条弦长分别为x,2x,y,则:x2+(2x)2+y2=6,即:5x2+y2=6,设 ,则这3条弦长之和=3x+y==sin(θ+φ),其中tanφ=,所以它的最大值为:
故答案为:
点评:本题是中档题,考查球的内接多面体的就是问题,三角函数的化简与求值,是综合题目,考查计算能力,空间想象能力.
练习册系列答案
相关题目