题目内容
若关于的不等式对任意恒成立,则实数的取值范围是_________.
已知椭圆C的左、右焦点分别为、,且经过点
(I)求椭圆C的方程:
(II)直线y=kx(kR,k≠0)与椭圆C相交于A,B两点,D点为椭圆C上的动点,且|AD|=|BD|,请问△ABD的面积是否存在最小值?若存在,求出此时直线AB的方程:若不存在,说明理由.
如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于与不同四点,直线的斜率满足, 已知与轴重合时, .
(1)求椭圆的方程;
(2)是否存在定点使得为定值,若存在,求出点坐标并求出此定值,若不存在,
说明理由.
已知定义在上的函数的图象如图所示,则的解集为( )
A. B.
C. D.
在中, 内角、、所对的边分别为、、,为的面积,设, 且,求的最大值,并指出此时的值.
若的三边长成公差为的 等差数列,最大角的正弦值为,则这个三角形的面积为( )
已知数列的首项,且,则为( )
A. B. C. D.
某学校为调查高三年级的240名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取24名同学进行调查;第二种由教务处对高三年级的学生进行编号,从001到240,抽取学号最后一位为3的同学进行调查,则这两种抽样方法依次为( )
A.分层抽样,简单随机抽样 B.简单随机抽样,分层抽样
C.分层抽样,系统抽样 D.简单随机抽样,系统抽样
变量与相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量与相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),表示变量与之间的线性相关系数,表示变量与之间的线性相关系数,则( )