ÌâÄ¿ÄÚÈÝ

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf(x)=
x2
x+m
µÄͼÏó¾­¹ýµã£¨4£¬8£©£®
£¨1£©Çó¸Ãº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÊýÁÐ{an}ÖУ¬Èôa1=1£¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇÒÂú×ãan=f£¨Sn£©£¨n¡Ý2£©£¬
Ö¤Ã÷ÊýÁÐ{
1
Sn
}
³ÉµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÁíÓÐÒ»ÐÂÊýÁÐ{bn}£¬Èô½«ÊýÁÐ{bn}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂÊý±í£º¼Ç±íÖеĵÚÒ»ÁÐÊýb1£¬b2£¬b4£¬b7£¬¡­£¬¹¹³ÉµÄÊýÁм´ÎªÊýÁÐ{an}£¬ÉϱíÖУ¬Èô´ÓµÚÈýÐÐÆð£¬Ã¿Ò»ÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈΪͬһ¸öÕýÊý£®µ±b81=-
4
91
ʱ£¬ÇóÉϱíÖеÚk£¨k¡Ý3£©ÐÐËùÓÐÏîµÄºÍ£®
·ÖÎö£º£¨1£©°ÑµãµÄ×ø±ê´úÈëÇó³öm¼´¿ÉÇó¸Ãº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÏÈÀûÓÃÌõ¼þÇó³öan=
Sn2
Sn-2
£®ÔÙ°Ñan»»µôÕûÀíºó¼´¿ÉÖ¤Ã÷ÊýÁÐ{
1
Sn
}
³ÉµÈ²îÊýÁУ¬È»ºóÀûÓÃÇó³öµÄSnÀ´ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÏÈÇó³öb81ËùÔÚλÖã¬ÔÙÀûÓÃÿһÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³ÉµÈ±ÈÊýÁУ¬Çó³ö¹«±È£¬ÔÙ´úÈëÇóºÍ¹«Ê½¼´¿É£®
½â´ð£º½â£¨1£©Óɺ¯Êýf(x)=
x2
x+m
µÄͼÏó¾­¹ýµã£¨4£¬8£©µÃ£ºm=-2£¬
º¯ÊýµÄ½âÎöʽΪf(x)=
x2
x-2
£¨2·Ö£©
£¨2£©ÓÉÒÑÖª£¬µ±n¡Ý2ʱ£¬an=f£¨Sn£©£¬¼´an=
Sn2
Sn-2
£®
ÓÖSn=a1+a2++an£¬
ËùÒÔSn-Sn-1=
Sn2
Sn-2
£¬¼´2Sn+Sn•Sn-1=2Sn-1£¬£¨5·Ö£©
ËùÒÔ
1
Sn
-
1
Sn-1
=
1
2
£¬£¨7·Ö£©
ÓÖS1=a1=1£®
ËùÒÔÊýÁÐ{
1
Sn
}
ÊÇÊ×ÏîΪ1£¬¹«²îΪ
1
2
µÄµÈ²îÊýÁУ®
ÓÉÉÏ¿ÉÖª
1
Sn
=1+
1
2
(n-1)=
n+1
2
£¬
¼´Sn=
2
n+1
£®
ËùÒÔµ±n¡Ý2ʱ£¬an=Sn-Sn-1=
2
n+1
-
2
n
=-
2
n(n+1)
£®
Òò´Ëan=
1£¬n=1
-
2
n(n+1)
£¬n¡Ý2
£¨9·Ö£©
£¨3£©ÉèÉϱíÖдӵÚÈýÐÐÆð£¬Ã¿ÐеĹ«±È¶¼Îªq£¬ÇÒq£¾0£®
ÒòΪ1+2++12=
12¡Á13
2
=78
£¬
ËùÒÔ±íÖеÚ1ÐÐÖÁµÚ12Ðй²º¬ÓÐÊýÁÐ{bn}µÄÇ°78Ï
¹Êb81ÔÚ±íÖеÚ13ÐеÚÈýÁУ¬£¨11·Ö£©
Òò´Ëb81=a13q2=-
4
91
£®
ÓÖa13=-
2
13¡Á14
£¬
ËùÒÔq=2£¨13·Ö£©
¼Ç±íÖеÚk£¨k¡Ý3£©ÐÐËùÓÐÏîµÄºÍΪS£¬
ÔòS=
ak(1-qk)
1-q
=-
2
k(k+1)
(1-2k)
1-2
=
2
k(k+1)
(1-2k)(k¡Ý3)
£¨16·Ö£©
µãÆÀ£º±¾ÌâÊǶÔÊýÁкͺ¯ÊýµÄ×ۺϿ¼²é£®Éæ¼°µ½µÈ±ÈÊýÁеÄÇóºÍÎÊÌ⣬ÔڶԵȱÈÊýÁÐÇóºÍʱ£¬Ò»¶¨ÒªÏÈÅжϹ«±ÈµÄÈ¡Öµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø