题目内容

已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.
(1)∵f(0)=0∴d=0,∴f(-x)=-f(x),函数f(x)为奇函数;
     又f(0.56)=-f(-0.56)=0.03>0,f(0.59)=-f(-0.59)=-0.03<0
∴f(x)在[0.55,0.6]上必有零点结论.
   (2)∵f(-0.35)=-0.22,f(-0.56)=-0.03,f(-0.59)=0.03,f(-0.61)=0.07,
∴f(x)在(-∞,-0.35]上单调递减.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网