题目内容

已知A、B、C三点不共线,O是平面ABC外的任一点,下列条件中能确定点M与点A、B、C一定共面的是(  )
A、
OM
=
OA
+
OB
+
OC
B、
OM
=2
OA
-
OB
-
OC
C、
OM
=
OA
+
1
2
OB
+
1
3
OC
D、
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC
分析:根据共面向量定理
OM
=m•
OA
+n•
OB
+p•
OC
,m+n+p=1
,说明M、A、B、C共面,判断选项的正误.
解答:解:由共面向量定理
OM
=m•
OA
+n•
OB
+p•
OC
,m+n+p=1

说明M、A、B、C共面,
可以判断A、B、C都是错误的,
则D正确.
故选D.
点评:本题考查共线向量与共面向量,考查学生应用基础知识的能力.是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网