题目内容
如图,长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,E,F,G分别是DD1,AB,CC1的中点,则异面直线A1E与GF所成角为( )
分析:连接B1G,EG,先利用长方形的特点,证明四边形A1B1GE为平行四边形,从而A1E∥B1G,所以∠B1GF即为异面直线A1E与GF所成的角,再在三角形B1GF中,分别计算三边的长度,利用勾股定理即可得此角的大小
解答:解:如图:连接B1G,EG
∵E,G分别是DD1,CC1的中点,
∴A1B1∥EG,A1B1=EG,∴四边形A1B1GE为平行四边形
∴A1E∥B1G,∴∠B1GF即为异面直线A1E与GF所成的角
在三角形B1GF中,B1G=
=
=
FG=
=
=
B1F=
=
=
∵B1G2+FG2=B1F2
∴∠B1GF=90°
∴异面直线A1E与GF所成角为90°
故选 D
∵E,G分别是DD1,CC1的中点,
∴A1B1∥EG,A1B1=EG,∴四边形A1B1GE为平行四边形
∴A1E∥B1G,∴∠B1GF即为异面直线A1E与GF所成的角
在三角形B1GF中,B1G=
B1C12+C1G2 |
1+1 |
2 |
FG=
FC2+C G2 |
2+1 |
3 |
B1F=
B1B2+BF2 |
4+1 |
5 |
∵B1G2+FG2=B1F2
∴∠B1GF=90°
∴异面直线A1E与GF所成角为90°
故选 D
点评:本题考查了空间异面直线所成的角的作法、证法、算法,长方体的性质及其中的数量关系的应用,将空间问题转化为平面问题的思想方法
练习册系列答案
相关题目