题目内容

(本题满分12分)已知函数y=的定义域为R,解关于x的不等式

 

【答案】

时,;当时,Ф;当时,.

【解析】

试题分析:由条件可得0≤a≤1,原不等式可化为(x-a)[x-(1-a)]>0,分0≤a<、a=<a≤1三种情况,分别求出不等式的解集.

解:∵函数y=的定义域为R,∴恒成立. …1分

时,,不等式恒成立;当时,则

解得.综上, ………………………4分

.……6分

,

∴(1)当,即时,

(2)当,即时,,不等式无解;

(3)当,即时,.………………………………10分

∴原不等式的解集为:当时,;当时,Ф;当时,. ……………………12分

考点:本试题主要考查了二元一次不等式的解法,函数的恒成立问题,体现了分类讨论的数学思想,属于中档题.

点评:解决该试题的关键是由条件可得0≤a≤1,对于参数a,分0≤a<、a=<a≤1三种情况,分别求出不等式的解集.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网