题目内容

如图,在△ABC和△AEF中,B是EF的中点,AB=EF=2,CA=CB=3,若
AB
AE
+
AC
AF
=7
,则
EF
BC
的夹角的余弦值等于
1
3
1
3
分析:由题意可得
BC
2
=9=(
AC
AB
)
2
,由此求得
AC
AB
=2,由
AB
AE
+
AC
AF
=7
以及两个向量的加减法的法则及其几何意义可求得
EF
BC
=2,即2×3×cos<
EF
BC
>=2,由此求得
EF
BC
的夹角的余弦值.
解答:解:由题意可得
BC
2
=9=(
AC
AB
)
2
=
AC
2
+
AB
2
-2
AC
AB
=9+4-2
AC
AB
,∴
AC
AB
=2.
AB
AE
+
AC
AF
=7
,可得
AB
•(
AB
+
BE
)
+
AC
•(
AB
+
BF
)
=
AB
2
+
AB
BE
+
AC
AB
+
AC
BF
=4+
AB
•(-
BF
)
+2+
AC
BF

=6+
BF
•(
AC
-
AB
)
=6+
1
2
EF
BC

EF
BC
=2,即 2×3×cos<
EF
BC
>=2,
∴cos<
EF
BC
>=
1
3

故答案为
1
3
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义、以及运算性质,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网