题目内容

已知双曲线C的两条渐近线都过原点,且都以点A(,0)为圆心,1为半径的圆相切,双曲线的一个顶点A1A点关于直线y=x对称.

(1)求双曲线C的方程.

(2)设直线l过点A,斜率为k,当0<k<1时,双曲线C的上支上有且仅有一点B到直线l的距离为,试求k的值及此时B点的坐标.

(1) x2y2=2, (2) B(2,)


解析:

(1)设双曲线的渐近线为y=kx,由d==1,解得k=±1.

即渐近线为yx,又点A关于y=x对称点的坐标为(0,).

a==b,所求双曲线C的方程为x2y2=2.

(2)设直线l: y=k(x)(0<k<1,

依题意B点在平行的直线l′上,且ll′间的距离为.

设直线l′:y=kx+m,应有,

化简得m2+2km=2                            ②

l′代入双曲线方程得(k2-1)x2+2mkx+m2-2=0,

Δ=4m2k2-4(k2-1)(m2-2)=0 

可得m2+2k2=2                                  ③

②、③两式相减得k=m,代入③得m2=,解得m=,k=,

此时x=,y=  故B(2,).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网