题目内容
一个棱长为8cm的密封正方体盒子中放一个半径为1cm的小球,无论怎样摇动盒子,则小球在盒子中不能到达的空间体积为 .
解析试题分析:小球在盒子不能到达的空间要分以下几种情况,在正方体顶点处的小正方体中,其体积等于小正方体体积减球的体积,在棱长处对应的正方体中,其体积等于这些小正方体体积的和减以球的直径为底面直径,以正方体和的高为高的圆柱,其他空间小球均能到达,综合后即可得到结果.解:在正方体的8个顶点处的单位立方体空间内,小球不能到达的空间为:8[13- (×13)]=8-,除此之外,在以正方体的棱为一条棱的12个1×1×6的正四棱柱空间内,小球不能到达的空间共为 [1×1×6- (π×12)×6]=72-18π.其他空间小球均能到达.故小球不能到达的空间体积为=
考点:球的体积
点评:本题考查的知识点是球的体积,棱柱的体积,其中熟练掌握棱柱和不堪的几何特征,建立良好的空间想象能力是解答本题的关键.
练习册系列答案
相关题目