题目内容
将A、B、C、D四个球放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球,且A、B两个球不能放在同一盒子中,则不同的放法有( )
A.30 | B.36 | C.60 | D.66 |
由题意知有一个盒子至少要放入2球,
先假设A、B可放入一个盒里,那么方法有C42=6,
再减去AB在一起的情况,就是6-1=5种.
把2个球的组合考虑成一个元素,
就变成了把三个不同的球放入三个不同的盒子,
那么共有A33=6种.
∴根据 分步计数原理知共有5×6=30种.
故选A.
先假设A、B可放入一个盒里,那么方法有C42=6,
再减去AB在一起的情况,就是6-1=5种.
把2个球的组合考虑成一个元素,
就变成了把三个不同的球放入三个不同的盒子,
那么共有A33=6种.
∴根据 分步计数原理知共有5×6=30种.
故选A.
练习册系列答案
相关题目