题目内容

互不相等的三个正数a、b、c成等差数列,又x是a、b的等比中项,y是b、c的等比中项,那么x2、b2、y2三个数(  )
A、成等差数列,非等比数列B、成等比数列,非等差数列C、既是等差数列,又是等比数列D、既不成等差数列,又不成等比数列
分析:解法1:对于含字母的选择题,可考虑取特殊值法处理.比如a=1,b=2,c=3即可得结论.
解法2:因为就研究三项,所以可用等差中项和等比中项的定义来推导即可.
解答:解法1:取特殊值法令a=1,b=2,c=3?x2=2,b2=4,y2=6.
解法2:b2-x2=b2-ab=b(a-b),y2-b2=bc-b2
=b(c-b)a-b=c-b?b2-x2=y2-b2,故x2、b2、y2三个数成等差数列.
若x2、b2、y2三个数成等比数列,
b4=x2y2?b4=ab•bc?b2=ac?(
a+c
2
)2=ac?a=c
与题意矛盾.
故选  A.
点评:本题主要考查等差中项:x,A,y成等差数列?2A=x+y,等比中项:x、G、y成等比数列?G2=xy,或G=±
xy
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网