题目内容
已知
•x2+
•x+
=
是关于x的一元二次方程,其中
,
,
是非零向量,且向量
和
不共线,则该方程( )
a |
b |
c |
0 |
a |
b |
c |
a |
b |
A、至少有一根 |
B、至多有一根 |
C、有两个不等的根 |
D、有无数个互不相同的根 |
分析:先将向量
移到另一侧得到关于向量
=-
x2-
x,再由平面向量的基本定理判断即可.
c |
c |
a |
b |
解答:解:
=-
x2-
x
因为
可以由不共线的向量唯一表示
所以可以由-x2和x唯一表示
若恰好形式相同,则有一个解,否则无解
所以至多一个解
故选B
c |
a |
b |
因为
c |
所以可以由-x2和x唯一表示
若恰好形式相同,则有一个解,否则无解
所以至多一个解
故选B
点评:本题主要考查平面向量的基本定理,即平面内任意向量都可由两不共线的非零向量唯一表示出来.
练习册系列答案
相关题目