题目内容
如图,已知点P为椭圆在第一象限内的任意一点,过椭圆的右顶点A和上顶点B分别作与y轴和x轴的平行线交于C,过P引BC、AC的平行线交AC于N,交BC于M,交AB于D、E,矩形PMCN的面积是S1,三角形PDE的面积是S2,则S1:S2=________.
1
分析:根据椭圆方程设P(5cosθ,3sinθ),得到|PN|、|PM|关于θ的式子,从而得到矩形PMCN的面积S1关于θ的式子.根据P点坐标和三角形相似的知识,分别算出D、E坐标关于θ的式子,从而得到|DP|、|EP|关于θ的式子,算出△PDE的面积S2关于θ的式子,将S1的式子与S2式子加以对比,即可得到S1:S2的值.
解答:根据椭圆方程,设P(5cosθ,3sinθ),
∵P是椭圆第一象限内的点,∴,
由此可得:|PN|=5-5cosθ,|PM|=3-3sinθ,
∴矩形PMCN的面积S1=|PM|•|PN|=15(1-cosθ)(1-sinθ).
设D(m,n),
∵DP∥x轴,∴n=3sinθ,可得m=5(1-sinθ),
因此,|PD|=5cosθ-5(1-sinθ)=5(sinθ+cosθ-1).
同理,求得|PE|=3(sinθ+cosθ-1)
∴△PDE的面积S2=|PD|•|PE|=×5(sinθ+cosθ-1)×3(sinθ+cosθ-1)=(sinθ+cosθ-1)2
∵(sinθ+cosθ-1)2=sin2θ+cos2θ+1+2sinθcosθ-2sinθ-2cosθ=2(1-sinθ-cosθ+sinθcosθ)
∴S2=(sinθ+cosθ-1)2=15(1-sinθ-cosθ+sinθcosθ)=15(1-cosθ)(1-sinθ)
由此可得,S1=S2,即得S1:S2=1
故答案为:1
点评:本题给出由椭圆生成的矩形PMCN的面积S1和△PDE的面积S2,求S1:S2的值.着重考查了椭圆的标准方程和简单几何性质等知识,属于中档题.
分析:根据椭圆方程设P(5cosθ,3sinθ),得到|PN|、|PM|关于θ的式子,从而得到矩形PMCN的面积S1关于θ的式子.根据P点坐标和三角形相似的知识,分别算出D、E坐标关于θ的式子,从而得到|DP|、|EP|关于θ的式子,算出△PDE的面积S2关于θ的式子,将S1的式子与S2式子加以对比,即可得到S1:S2的值.
解答:根据椭圆方程,设P(5cosθ,3sinθ),
∵P是椭圆第一象限内的点,∴,
由此可得:|PN|=5-5cosθ,|PM|=3-3sinθ,
∴矩形PMCN的面积S1=|PM|•|PN|=15(1-cosθ)(1-sinθ).
设D(m,n),
∵DP∥x轴,∴n=3sinθ,可得m=5(1-sinθ),
因此,|PD|=5cosθ-5(1-sinθ)=5(sinθ+cosθ-1).
同理,求得|PE|=3(sinθ+cosθ-1)
∴△PDE的面积S2=|PD|•|PE|=×5(sinθ+cosθ-1)×3(sinθ+cosθ-1)=(sinθ+cosθ-1)2
∵(sinθ+cosθ-1)2=sin2θ+cos2θ+1+2sinθcosθ-2sinθ-2cosθ=2(1-sinθ-cosθ+sinθcosθ)
∴S2=(sinθ+cosθ-1)2=15(1-sinθ-cosθ+sinθcosθ)=15(1-cosθ)(1-sinθ)
由此可得,S1=S2,即得S1:S2=1
故答案为:1
点评:本题给出由椭圆生成的矩形PMCN的面积S1和△PDE的面积S2,求S1:S2的值.着重考查了椭圆的标准方程和简单几何性质等知识,属于中档题.
练习册系列答案
相关题目