题目内容

(本小题满分14分)
在四棱锥中,//平面.

(Ⅰ)设平面平面,求证://
(Ⅱ)求证:平面
(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.
(1)主要根据 ,那么得到线线平行。
(2)建立空间直角坐标系,然后借助于直线的方向向量和平面的法向量平行来表示证明。
(3)

试题分析:(1)

又面———————————4分
(2)以点为坐标原点,轴,轴,轴建立空间直角坐标系。
————————7分


,即,又
————————————————————————————9分
(3)由(2)得,是面的一个法向量,——————————————11分
,则

————————————————————————————————14分
点评:对于空间中的平行和垂直的证明,以及角的求解是立体几何重点考查的题型之一,通常可以用几何法或向量法来得到。属于中档题。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网