题目内容
已知数列{an+1}满足an+1=2an-1且n,数列{bn}的前n项和为Sn.(1)求数列{an}的通项an; (2)求Sn;
(3)设f(x)=(x-2n+1)ln(x-2n+1)-x(n∈N*),求证:f(x)≥
3Sn+2 | 6Sn-2 |
分析:(1)由an+1=2an-1得an+1-1=2(an-1),且a1-1=2由此能求出an.
(2)由an=2n+1,知b n=
=
-
,由此能够求出Sn.
(3)由
=
=
=
=-2n,f′(x)=ln(x-2n+1),知当x=2n时,f'(x)=0;x>2n时,f'(x)>0,由此能够证明f(x)≥
成立.
(2)由an=2n+1,知b n=
2n |
(2n+1)(2n+1+1) |
1 |
2n+1 |
1 |
2n+1+1 |
(3)由
3Sn+2 |
6Sn-2 |
1-
| ||
2-
|
3(1-
| ||
-
|
2n+1 |
-2 |
3Sn+2 |
6Sn-2 |
解答:解:(1)由an+1=2an-1得an+1-1=2(an-1),且a1-1=2,∴数列{an-1}是以2为首项,2为公比的等比数列,an-1=2•2n-1,∴an=2n+1.
(2)由(1)知an=2n+1,∴b n=
=
-
,Sn=
-
+
-
+
-
++
-
=
-
.
(3)证明:
=
=
=
=-2n,f′(x)=ln(x-2n+1),
当x=2n时,f'(x)=0;x>2n时f'(x)>0,f(x)在(2n,+∞)上递增;2n-1<x<2n时,f(x)min=-2n=
∴f(x)≥
成立.
(2)由(1)知an=2n+1,∴b n=
2n |
(2n+1)(2n+1+1) |
1 |
2n+1 |
1 |
2n+1+1 |
1 |
2+1 |
1 |
22+1 |
1 |
22+1 |
1 |
23+1 |
1 |
23+1 |
1 |
24+1 |
1 |
2n+1 |
1 |
2n+1+1 |
1 |
3 |
1 |
2n+1+1 |
(3)证明:
3Sn+2 |
6Sn-2 |
1-
| ||
2-
|
3(1-
| ||
-
|
2n+1 |
-2 |
当x=2n时,f'(x)=0;x>2n时f'(x)>0,f(x)在(2n,+∞)上递增;2n-1<x<2n时,f(x)min=-2n=
3Sn+2 |
6Sn-2 |
3Sn+2 |
6Sn-2 |
点评:本题考查数列的通项公式的求法、数列前n项和的解法和数列与不等式的综合运用,解题时要注意迭代法、错位相减法和导数的合理运用.
练习册系列答案
相关题目