题目内容

设O为坐标原点,F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,若在椭圆上存在点P满足F1PF2=
π
3
,且|OP|=
3
2
a
,则该椭圆的离心率为
1
2
1
2
分析:由于
PO
=
1
2
PF1
+
PF2
),两边平方,再利用余弦定理即可求得该椭圆的离心率.
解答:解:令|
PF1
|=m,|
PF2
|=n,m+n=2a.
PO
=
1
2
PF1
+
PF2
),|
PO
|
=
3
2
a,
PO
2
=
1
4
PF1
2
+2
PF1
PF2
+
PF2
2

3
4
a2=
1
4
(m2+2mncos
π
3
+n2),
∴3a2=m2+n2+mn=(m+n)2-mn=4a2-mn,
∴a2=mn.
在△PF1F2中,由余弦定理得:|F1F2|2=m2+n2-2mn×
1
2
=(m+n)2-3mn,
即4c2=4a2-3mn=4a2-3a2=a2
∴e=
c
a
=
1
2

故答案为:
1
2
点评:本题考查向量的数量积与余弦定理的综合应用,考查方程思想与运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网