ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖªÖ±Ïßl£º$\left\{\begin{array}{l}{x=m+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬¦Á¡Ùk¦Ð£¬k¡ÊZ£©¾¹ýÍÖÔ²C£º$\left\{\begin{array}{l}{x=2cos¦Õ}\\{y=\sqrt{3}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©µÄ×ó½¹µãF£®£¨1£©ÇómµÄÖµ£»£¨2£©ÉèÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Çó|FA|•|FB|µÄ×îСֵ£®
·ÖÎö £¨1£©Ê×ÏȰѲÎÊý·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬½øÒ»²½ÀûÓõãµÄ×ø±êÇó³ömµÄÖµ£®
£¨2£©ÀûÓã¨1£©µÄ½áÂÛ£¬½øÒ»²½½¨Á¢Ò»²ÎÊýΪ±äÁ¿µÄÒ»Ôª¶þ´Î·½³Ì£¬½øÒ»²½¸ù¾Ý¸ùºÍϵÊýµÄ¹ØϵÇó³öº¯ÊýµÄ¹Øϵʽ£¬ÔÙÀûÓú¯ÊýµÄÖµÓòÇó³ö½á¹û£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\left\{\begin{array}{l}x=2cosϕ\\ y=\sqrt{3}sinϕ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©µÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£¬·½³ÌµÄ×ó½¹µãΪF£¬
¡àF£¨-1£¬0£©£®
¡ßÖ±Ïßl£º$\left\{\begin{array}{l}{x=m+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬¦Á¡Ùk¦Ð£¬k¡ÊZ£©µÄÆÕͨ·½³ÌΪ£ºy=tan¦Á£¨x-m£©£®
¡ß¦Á¡Ùk¦Ð£¬k¡ÊZ£¬
¡àtan¦Á¡Ù0
¡ßÖ±Ïß¾¹ýµãF£¬
ËùÒÔ£º0=tan¦Á£¨-1-m£©£¬½âµÃ£ºm=-1£®
£¨2£©½«Ö±ÏߵIJÎÊý·½³Ì$\left\{\begin{array}{l}x=-1+tcos¦Á\\ y=tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëÍÖÔ²CµÄÆÕͨ·½³Ì$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$²¢ÕûÀíµÃ£º
£¨3cos2¦Á+4sin2¦Á£©t2-6tcos¦Á-9=0£®
ÉèµãA¡¢BÔÚÖ±Ïß²ÎÊý·½³ÌÖжÔÓ¦µÄ²ÎÊý·Ö±ðΪt1ºÍt2£¬
Ôò|FA|¡Á|FB|=|t1t2|
=$\frac{9}{3{cos}^{2}¦Á+4{sin}^{2}¦Á}$
=$\frac{9}{3+{sin}^{2}¦Á}$£¬
µ±sin¦Á=¡À1ʱ£¬|FA|¡Á|FB|µÄ×îСֵΪ$\frac{9}{4}$£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º²ÎÊý·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¼°²ÎÊý·½³ÌµÄÓ¦Ó㬸ùºÍϵÊýµÄ¹ØϵµÄÓ¦Óã¬Èý½Çº¯ÊýµÄ×îÖµÎÊÌâµÄÓ¦Óã¬Ö÷Òª¿¼²ìѧÉúÔËËãÄÜÁ¦ºÍ¶ÔÊýÐνáºÏµÄÀí½âÄÜÁ¦£®
A£® | $\frac{\sqrt{3}}{2}$ | B£® | $\sqrt{3}$ | C£® | 2 | D£® | 2$\sqrt{3}$ |
A£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ | B£® | ³ä·Ö²»±ØÒªÌõ¼þ | ||
C£® | ±ØÒª²»³ä·ÖÌõ¼þ | D£® | ³äÒªÌõ¼þ |