题目内容

已知等差数列{an}满足:a1+a2n-1=2n,n∈N*,设Sn是数列{数学公式}的前n项和,记f(n)=S2n-Sn
(1)求an
(2)比较f(n+1)与f(n)的大小;
(3)(理)若不等式log2t+log2x+log2(2-x)-log2(12f(n))-3<0对一切大于1的自然数n和所有使不等式有意义的实数x都成立,求实数t的取值范围.
(文)如果函数g(x)=x2-3x-3-12f(n)对于一切大于1的自然数n,其函数值都小于零,求x的取值范围.

解:(1)设an=a1+(n-1)d,(n∈N*),由a1+a2n-1=2n,得a1+a1+(2n-1-1)d=2n,
所以an=n
(2)由Sn=++…+=1++…+
f(n)=S2n-Sn=(1++…+)-(1++…+)=++…+
因为f(n+1)-f(n)=(++…+)-(++…+
=-=>0
所以f(n+1)>f(n)
(3)(理)不等式log2t+log2x+log2(2-x)-log2(12f(n))-3<0可化为log2t<log2(0<x<2)
∴t<(0<x<2)
要使对一切大于1的自然数n和所有使不等式有意义的实数x都成立,则t<(min(0<x<2)
由(2)可知:数列{f(n)}的项的取值是随n的增大而增大,当n≥2时,f(n)的最小值为f(2)=
当0<x<2时,x(x-2)的最大值为1
∴(min=56(0<x<2)
∴t<56
(文)由(2)可知:数列{f(n)}的项的取值是随n的增大而增大,当n≥2时,f(n)的最小值为f(2)=
∴函数g(x)=x2-3x-3-12f(n)对于一切大于1的自然数n,其函数值都小于零等价于x2-3x-3-7<0
∴x2-3x-10<0
∴-2<x<5
分析:(1)因为数列{an}为等差数列,所以数列中的每一项均可用首项和公差表示,代入a1+a2n-1=2n,即可求出an
(2)根据等差数列的通项公式,求出函数f(n)的表达式,再用作差法比较f(n+1)与f(n)的大小.
(3)(理)不等式化为t<(0<x<2),要使对一切大于1的自然数n和所有使不等式有意义的实数x都成立,则t<(min(0<x<2),由此可求t的取值范围;
(文)确定f(n)的最小值为f(2)=,从而函数g(x)=x2-3x-3-12f(n)对于一切大于1的自然数n,其函数值都小于零等价于x2-3x-3-7<0,由此可确定x的取值范围.
点评:本题主要考查了函数与数列的综合运用,考查恒成立问题,考查学生分析解决问题的能力,确定函数的最值是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网