题目内容
在平面直角坐标系中,不等式组(a为常数)表示的平面区域的面积8,则x2+y的最小值
A. | B.0 | C.12 | D.20 |
A
试题分析:根据题意,由于不等式组(a为常数)表示的平面区域的面积8,那么可知 ,因此可知所求的表示为区域内点到原点距离的最小值问题,那么可知
目标函数的表示的最小值即为过点与直线y=-x相切的情况,此时可知其在y轴上的截距为,故选A.
点评:解决的关键是对于不等式表示的区域的理解以及目标函数的几何意义的运用,属于基础题。
练习册系列答案
相关题目