题目内容
【题目】如图所示,在长方体中,点E是棱上的一个动点,若平面交棱于点F,给出下列命题:
①四棱锥的体积恒为定值;
②对于棱上任意一点E,在棱上均有相应的点G,使得平面;
③O为底面对角线和的交点,在棱上存在点H,使平面;
④存在唯一的点E,使得截面四边形的周长取得最小值.
其中为真命题的是____________________.(填写所有正确答案的序号)
【答案】①③④
【解析】
①将四棱锥转化为2个,进而求解判断即可;②找到反例即可;③利用中位线证明即可;④将四边形的周长的最值转化为的最值,进而求解即可
①,
又三棱锥为三棱锥,则底面不变,且因为平面,故点到底面的距离即三棱锥底面的高不变,故三棱锥的体积不变,所以四棱锥的体积不变,恒为定值,故①正确;
②当点在点处时,总有与平面相交,故②错误;
③由O为底面对角线和的交点,则,设为的中点,则在中,所以平面,故③正确;
④四边形的周长为,则分析即可,将矩形沿着展开使得在延长线上时,此时的位置设为,则线段与的交点即为截面平行四边形的周长取得最小值时唯一点,故④正确;
故答案为:①③④
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸x(mm)之间近似满足关系式(b、c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量y (g) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望;
(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(ⅰ)根据所给统计量,求y关于x的回归方程;
(ⅱ)已知优等品的收益(单位:千元)与的关系为,则当优等品的尺寸x为何值时,收益的预报值最大?(精确到0.1)
附:对于样本 ,其回归直线的斜率和截距的最小二乘估计公式分别为:,,.