题目内容

已知圆C:
x=1+cosθ
y=sinθ
(θ为参数)和直线l:
x=2+tcosα
y=
3
+tsinα
(其中为参数,α为直线的倾斜角),如果直线与圆C有公共点,求α的取值范围.
∵直线l的参数方程为l:
x=2+tcosα
y=
3
+tsinα
(t为参数,α为直线l的倾斜角),
消去参数t化为普通方程为tanα•x-y-2tanα+
3
=0.
圆C:
x=1+cosθ
y=sinθ
(θ为参数),化为直角坐标方程为(x-1)2+y2=1,
表示以C(1,0)为圆心,以1为半径的圆.
根据圆心C到直线的距离d=
|-tanα+
3
|
1+tan2α
≤1,
解得tanα≥
3
3

再由倾斜角α∈[0,π) 可得,
π
6
≤α
π
2

故α的取值范围为[
π
6
π
2
).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网