题目内容
过定点P(2,1)作直线l,分别与x轴、y轴正向交于A,B两点,求使△AOB面积最小时的直线方程.
设所求的直线方程为
+
=1(a>0,b>0),由已知
+
=1.
于是
•
≤(
)2=
,当且仅当
=
=
,即a=4,b=2时,取最大值,
即S△AOB=
•ab取最小值4.
故所求的直线l的方程为
+
=1,即x+2y-4=0.

x |
a |
y |
b |
2 |
a |
1 |
b |
于是
2 |
a |
1 |
b |
| ||||
2 |
1 |
4 |
2 |
a |
1 |
b |
1 |
2 |
即S△AOB=
1 |
2 |
故所求的直线l的方程为
x |
4 |
y |
2 |


练习册系列答案
相关题目