题目内容

(2013•大兴区一模)已知函数f(x)是定义(0,+∞)的单调递增函数,且x∈N*时,f(x)∈N*,若f[f(n)]=3n,则f(2)=
3
3
;f(4)+f(5)=
15
15
分析:由x∈N*时,f(x)∈N*,分类讨论可得f(1)=2,进而可得f(3)=6,f(6)=9,由单调性可知f(4)=7,f(5)=8,进而可得答案.
解答:解:若f(1)=1,则f(f(1))=f(1)=1,与条件f(f(n))=3n矛盾,故不成立;
若f(1)=3,则f(f(1))=f(3)=3,即f(1)=f(3)这与函数单调递增矛盾,故不成立;
若f(1)=n (n>3),则f(f(1))=f(n)=3,与f(x)单调递增矛盾,故不成立;
所以只剩f(1)=2,代入可得f(f(1))=f(2)=3,
进而可得f(f(2))=f(3)=6,f(f(3))=f(6)=9,
由单调性可知f(4)=7,f(5)=8,故f(4)+f(5)=15
故答案为:3;15
点评:本题考查函数值的求解,涉及分类讨论的思想,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网