题目内容

精英家教网如图,在杨辉三角中,斜线l的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10,…,则这个数列的第21项的值为(  )
A、66B、220C、78D、286
分析:先对“锯齿形”的数列的奇数项找规律,求出通项公式,然后利用“锯齿形”数列的第21项即为新数列的第11项即可求出结论.
解答:解:设“锯齿形”数列的奇数项构成数列{bn},
由b2-b1=3-1=2,b3-b2=6-3=3,b4-b3=10-6=4,b5-b4=15-10=5,?bn-bn-1=n,
所以可得bn=
(2+n)(n-1)
2
+b1
,即bn=
n2+n
2

又因为“锯齿形”数列的第21项即为数列{bn}的第11项,b11=
112+11
2
=66

故选A.
点评:本题借助于杨辉三角对数列的综合应用进行考查,是道基础题,但也是易错题,当发现不了规律时就变成了难题.所以在做数列题时,要认真审题,仔细解答,避免错误.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网