ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÁ½¸ö½¹µã·Ö±ðΪF1£¨-2£¬0£©£¬F2£¨2£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£®¹ý½¹µãF2µÄÖ±Ïßl£¨Ð±Âʲ»Îª0£©ÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Ï߶ÎABµÄÖеãΪD£¬OΪ×ø±êԵ㣬ֱÏßOD½»ÍÖÔ²ÓÚM£¬NÁ½µã£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©µ±ËıßÐÎMF1NF2Ϊ¾ØÐÎʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®
·ÖÎö £¨I£©ÓÉÒÑÖª¿ÉµÃ£º$\left\{\begin{array}{l}{c=2}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ¼´¿ÉµÃ³ö£»
£¨II£©ÓÉÌâÒâ¿ÉÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬ÉèÖ±Ïßl·½³ÌΪy=k£¨x-2£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x3£¬y3£©£¬N£¨-x3£¬-y3£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£¨1+3k2£©x2-12k2x+12k2-6=0£¬£®ÀûÓøùÓëϵÊýµÄ¹Øϵ¡¢Öеã×ø±ê¹«Ê½¿ÉµÃ£ºÏ߶ÎABµÄÖеãD$£¨\frac{6{k}^{2}}{1+3{k}^{2}}£¬\frac{-2k}{1+3{k}^{2}}£©$£¬¿ÉµÃÖ±ÏßODµÄ·½³ÌΪ£ºx+3ky=0£¨k¡Ù0£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢£¬½âµÃ${y}_{3}^{2}$=$\frac{2}{1+3{k}^{2}}$£¬x3=-3ky3£®ÀûÓÃËıßÐÎMF1NF2Ϊ¾ØÐΣ¬¿ÉµÃ$\overrightarrow{{F}_{2}M}•\overrightarrow{{F}_{2}N}$=0£¬½â³ö¼´¿É£®
½â´ð ½â£º£¨I£©ÓÉÒÑÖª¿ÉµÃ£º$\left\{\begin{array}{l}{c=2}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬
½âµÃa2=6£¬b2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$£»
£¨II£©ÓÉÌâÒâ¿ÉÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬
ÉèÖ±Ïßl·½³ÌΪy=k£¨x-2£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x3£¬y3£©£¬N£¨-x3£¬-y3£©£®
ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\\{y=k£¨x-2£©}\end{array}\right.$£¬»¯Îª£¨1+3k2£©x2-12k2x+12k2-6=0£¬
¡àx1+x2=$\frac{12{k}^{2}}{1+3{k}^{2}}$£¬y1+y2=k£¨x1+x2-4£©=$\frac{-4k}{1+3{k}^{2}}$£¬
¡àÏ߶ÎABµÄÖеãD$£¨\frac{6{k}^{2}}{1+3{k}^{2}}£¬\frac{-2k}{1+3{k}^{2}}£©$£¬
¡àÖ±ÏßODµÄ·½³ÌΪ£ºx+3ky=0£¨k¡Ù0£©£®
ÁªÁ¢$\left\{\begin{array}{l}{x+3ky=0}\\{{x}^{2}+3{y}^{2}=6}\end{array}\right.$£¬½âµÃ${y}_{3}^{2}$=$\frac{2}{1+3{k}^{2}}$£¬x3=-3ky3£®
¡ßËıßÐÎMF1NF2Ϊ¾ØÐΣ¬
¡à$\overrightarrow{{F}_{2}M}•\overrightarrow{{F}_{2}N}$=0£¬
¡à£¨x3-2£¬y3£©•£¨-x3-2£¬-y3£©=0£¬
¡à$4-{x}_{3}^{2}-{y}_{3}^{2}$=0£¬
¡à$4-\frac{2£¨9{k}^{2}+1£©}{1+3{k}^{2}}$=0£¬½âµÃk=$¡À\frac{\sqrt{3}}{3}$£¬
¹ÊÖ±Ïß·½³ÌΪy=$¡À\frac{\sqrt{3}}{3}£¨x-2£©$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¡÷£¾0¼°Æä¸ùÓëϵÊýµÄ¹Øϵ¡¢Öеã×ø±ê¹«Ê½¡¢¾ØÐεÄÐÔÖÊ¡¢ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹Øϵ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | f£¨x£©=x2 | B£® | f£¨x£©=2x-1 | C£® | f£¨x£©=ln£¨x2+1£© | D£® | f£¨x£©=x2+1 |
A£® | 2 | B£® | 3 | C£® | 4 | D£® | 5 |
A£® | 16 | B£® | 12 | C£® | 20 | D£® | 15 |