题目内容

已知函数   是奇函数.
(1)求实数的值;
(2)若函数在区间上单调递增,求实数的取值范围;
(3)求函数的值域.

(1);(2);(3)

解析试题分析:(1)利用奇函数的定义,由列式求解;(2)画出函数的图象,由图象列式求解;(3)分段求值域:当时,;当时,=0;当时,,最后求并集得函数的值域.
试题解析:(1)当时,.∵是奇函数,∴.   2分
,∴.           4分
(2)由(1)得由图象得      7分
解得.                   8分
(3)当时,;当时,=0;当时,,∴的值域为.        13分
考点:函数的性质(单调性、奇偶性、值域).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网