题目内容
【题目】已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若对任意x∈R,f(x)≥0恒成立,求a的范围;
(3)若方程f(x)=x有三个不同的解,求实数a的取值范围.
【答案】
(1)解:a=0,不等式f(x)≥x化为不等式|x+1|﹣|x|≥x.
x≤﹣1时,﹣x﹣1+x≥x,∴x≤﹣1;
﹣1<x<0时,x+1+x≥x,∴﹣1<x<0;
x≥0时,x+1﹣x≥x,∴0≤x≤1;
综上所述,不等式f(x)≥x的解集为{x|x≤1}
(2)解:若对任意x∈R,f(x)≥0恒成立,|x|﹣|x+1|≤a恒成立,
∵|x|﹣|x+1|≤|x﹣x﹣1|=1,∴a≥1
(3)解:设u(x)=|x+1|﹣|x|,y=u(x)的图象和y=x的图象如图所示.
易知y=u(x)的图象向下平移1个单位以内(不包括1个单位),与y=x的图象始终有3个交点,
从而﹣1<a<0.
所以实数a的取值范围为(﹣1,0)
【解析】(1)若a=0,不等式f(x)≥x化为不等式|x+1|﹣|x|≥x,分类讨论,即可求得f(x)≥x的解集;(2)若对任意x∈R,f(x)≥0恒成立,|x|﹣|x+1|≤a恒成立,求出左边的最大值,即可求a的范围;(3)u(x)=|x+1|﹣|x|,做出y=u(x)和y=x的图象,方程f(x)=x恰有三个不同的实根,转化成y=u(x)与y=x的图象始终有3个交点,根据函数图象即可求得实数a的取值范围.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
【题目】现在颈椎病患者越来越多,甚至大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在遂宁市中心医院随机的对入院的50名大学生进行了问卷调查,得到了如下的4×4列联表:
未过度使用 | 过度使用 | 合计 | |
未患颈椎病 | 15 | 5 | 20 |
患颈椎病 | 10 | 20 | 30 |
合计 | 25 | 25 | 50 |
(1)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?
(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为,求的分布列及数学期望.
参考数据与公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |