题目内容
若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是
[ ]
A.a2-2a-2b-3=0
B.a2+2a+2b+5=0
C.a2+2b2+2a+2b+1=0
D.3a2+2b2+2a+2b+1=0
答案:B
解析:
解析:
利用两圆的公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.把两圆分别化成一般式方程,作差可得公共弦方程为(2a+2)x+(2b+2)y-a2-1=0,它经过圆心(-1,-1),代入后有a2+2a+2b+5=0. |
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目